Discrete Mathematics

Geometric Sequences

Target: Generate and identify the explicit rule for geometric sequences Review of Prior Concepts

Is the sequence arithmetic? If yes, find the common difference.

a) 1,5,9,13,17, ...

- **b**) 1,4,9,16,25, ...
- c) $4x, x, -2x, -5x, -8x, \dots$

SAT Connection Passport to Advanced Math

10. Interpret parts of nonlinear expressions in terms of their context

Example: Jessica opened a bank account that earns 2 percent interest compounded annually. Her initial deposit was \$100, and she uses the expression $100(x)^t$ to find the value of the account after *t* years. What is the value of *x* in the expression?

/ 00 0000 10000 20000 30000 40000 50000 70000 80000 80000	NOTE: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.
90000	

Geometric Sequence

Geometric Sequence – sequence written as $\{a, ar, ar^2, ar^3, ..., ar^{n-1}, ...\}$

Discrete Mathematics

Example 2: Find the common ratio and 10th term, and write a recursive rule and explicit rule for the sequence: 7,0.7,0.07,0.007, ...

Example 3: Given $a_3 = \frac{1}{2}$ and $a_5 = \frac{9}{2}$, find a_1 .

Example 4: The fifth and eighth terms of a geometric sequence are 1920 and 30, respectively, find a_1 .

Example 5: A population of ants is growing at a rate of 8% a year. If there are 160 ants in the initial population, find the number of ants after 6 years.

Example 6: Find which term in the geometric sequence 1, 3, 9, 27, ... is the first to exceed 7,000.