Name: _ Period:

This activity will help you prove the Pythagorean Theorem using President Garfield's method. His method was published in 1876, New-England Journal of Education (now known simply as the Journal of Education: Lamb, 2012).

Objective:Prove the Pythagorean Theorem, CCSS.MATH.CONTENT.HSG.SRT.B.4Directions:Follow the steps below, which will help you to meet the objective.

Available on MATHguide: http://www.mathguide.com/activities/ProvingPythagoras2.pdf

5)	One way to determine the area of a figure is to calculate it by looking at the large figure, which is a trapezoid. $A_{trapezoid} = \frac{(height)(base_1 + base_2)}{2}$	6) Another way to determine the area of a figure is to break up a figure into small pieces and find the sum of those areas. Determine the areas of its pieces. $A_{triangle} = \frac{1}{2}(base)(height)$				
	2		triangle 1	trian +	gle 2	triangle 3 +
	Area =		Area =			
7)	We now have two separate calculations for the area from problem #6. Since the areas are representati other. Set the two areas equal to each other and c					